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Differential equations describing the temperature and concentration dependence of 
the thermodiffusion ratio for binary gas mixtures and saturated vapor--gas mixtures 

are derived on the basis of linear phenomenological equations for the total mole- 
cular flux of mass and heat. 

The thermodiffusion phenomenon has found wide application in connection with obtaining 
substances with a high degree of purity. It accompanies processes of heat and mass transfer 
in the presence of a temperature gradient and can make an appreciable contribution to them. 
Therefore, neglect of the thermodiffusion effect prevents one from estimating the degree of 
reliability of a calculated or measured quantity [I]. 

Calculated values of the thermodiffusion ratio obtained on the basis of the known theo- 
retical methods differ by one to two orders of magnitude from measured values of it in the 
low-pressure region (up to 1 bar) [2]. A qualitative similarity of the results is not even 
satisfied in certain cases [i]. The known experimental methods of determining the coefficient 
of the thermodiffusion ratio of a binary gas mixture are not applicable for a vapor--air 
mixture. 

The absence of reliable methods of calculating the thermodiffusion ratio of a gas 
mixture, and the imperfection of the experimental method of determining the thermodiffusion 
ratio of a binary gas mixture in application to a vapor--gas mixture with a nonuniform gas 
component, limit the possibilities of theoretical research on combined heat and mass transfer 
in evaporation and condensation processes with allowance for the thermodiffusion effect 
and diffusional heat conduction. 

In this paper we propose a method enabling one to obtain differential equations for 
determining the thermodiffusion ratio of a binary gas mixture and a vapor--gas mixture. 

According to [3], for a binary mixture of ideal gases at a constant total pressure the 
system of phenomenological equations for the mass- and heat-flux densities, in the case of 
the absence of convection, has the form 

J i = - - R  ~I71"-----'2--I VXi--?~o I~1 V T, x~x~ ~ (1) 

?oo vT 71o ( 0 @ )  q -- T~ - -  R VXi + J~ . (2) 
XiX2 

Expressing Vxl through Vcl = V(pl/9) in these equations, we find 

~t vT  ' (3)  

q - -  T2 x~x2 [~t + ( ~ - -  ~h)ci] 2 vci q- \ Oc~ J " (4) 
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Equations (3) and (4) can be considered as the thermodynamic generalization of Fick's 
and Fourier's laws, where the roles of the proper coefficients of diffusion and thermal 
conductivity are played by the quantities 

D = _ _  _ 
p x~x2 [~ + (P2 -- N) cd ~ 

(5) 

~, = 7oo/T ~. (6) 

In addition, they contain cross coefficients of transfer, which are expressed by the dimen- 
sionless relation 

Kt _ ~ i ? l O  

pDT (7) 

With allowance for (5)-(7), Eqs. (3) and (4) take the form 

(8 )  

q = . _ ~ V  T p R DT Kt p,~= (-'~-c~")" (9) ~ x~x----[ [t~ + (tt,~ - -  lx~) c~] ~ VC~ + J~ OH 

Expressing xl and x= through ci and substituting (9), we have 

q = _ _  E v T .  pR DTKt Vq + Jl 0__~H (10) 
~ c~(l --cO Oc~ 

For steady diffusion, the concentration and temperature fields in a binary mixture will be 
described by the system of equations 

div[ - -pD(vc  I + - ~ V T ) ]  --O, (11) 

div -- ~,V T 
j O H ]  oR vc, + , j : o, 

,% ci (1 - -  Ci) (12) 

~1~2 P 
P = (~ t2 -  ~1)C1 Jr- ~1 RT (13) 

or, for the case of one-dimensional diffusion, 

d x  

dT pR DTK t dCl-,~-J1 O H ]  =0,  
(15) 

dx ~1 c1 (1 - -c l )  dx Oc~ J 

~I~2 p 
P = (~2--- ~I) cI Jr ~l RT (16) 

708 



Assuming that D, Kt, and X are variables, i.e., D = D(T), K t = Kt(c~ , T), and X = X(cl, T), 
we find 

d2c___!t_~ K't d2T 1 dP ( dci )2 ( K t  09 
dx. ' T dx" -~- - -  + --~ + 9 0cl ~ dx pT OT 

DT dT + T OT T ~ dx / + , 9 dT 

1 dD K t  dO _~ 1 OKt ) dcl dT - - 0 .  
-~ D dT ~ 9T dcl T Ocl . dx dx 

d~"cl ~1cl  (1 - -  cl) d~T [ 1 09 1 OKt 

dx2 + pRDTK t dxlf- @ L P OQ + --K t Ocl ~- 

2 c i - - I  lhc1(1--c,)  O2H ]( de, .I 2~,_[ ~ ,C l ( l - - c , )  O>L 
c~(1--c,)  "+ RTKt  i)c---~ j~ dx / L pRDTK t OT 

- - +  

§ 

q_ ,~tlC l ( l  --C l) 
RT ~ 

+ 1__ a_2_o _ 
p OT 

Oc~OT \ dx / ~- pRDTKt  OC 1 ' 

1 d D  1 1 OKt -I- ~1c,(1 - - q )  02H 
U + - Y  + K Rv 04 

t 
91c1(1 - - c , )  02H ~ dcl dT O. 

+ RTFt. 6clOT J dx dx 

§ 

- - +  

(17) 

(18) 

The system of equations (17) and (18) is a mathematical model of the temperature and 
concentration fields formed in a binary mixture during combined heat and mass transfer in 
the case of a mixture of variable density, concentration, and temperature (p = const). 

From the system of equations (17)-(18) we find Kt(c~ , T) from the known functions 
X(cl, T), D(T), and H(ct, T) under certain assumptions about the parameters determining 
the state of a binary mixture. 

i. In a binary mixture in which one-dimensional, steady, molecular heat and mass 
transfer occur, let p = const and 0 = const over the entire volume, which corresponds to the 
conditions of the Chapman--Enskog scheme -- the mixture is in a state of mechanical equilibrium: 
K t = Ke(T, ct) is the true value of the thermodiffusion ratio, while the system of equations 
(17)-(18) is written in the form 

d2c_____L_~ + ~ K t  d2T + [  K t  dD _~ 1 OKt Kt  ~ [ d T ~  + 
dx-- q-  dx 2 ) dx) T DT dT T OT T 2 

1 dD dc, dT 
+ - -  - - 0 ,  

D dT ~ dx 

- -  _it_ ~ t C 1  (I - -  g l )  d 2T [ 1 OKt @ 
pRDTKt  - dx ~ + _ K t Oc----~" 

O2H ] ( dc1~2@ [ FX~Cl(1--cl) 
Oc~ ~ dx ) pRDTt~  

OclOT L pRDTK t 

1 1 c)Kt 4- ~1Cl (1 - -  ca) 
- -  + - C  + o r  RT' 

+ ~ 1 c 1 ( 1 - - c l )  02H ] dCl dT - O. 
RTK OclOT J dx dx 

d2c1 

dx 2 

AC ~1Cl (1 - -  Cl) 
RTK t 

_~_ IalC~ (I - -  cl) 
RT ~ 

1 dD + - -  
D dT 

2c, - -  1 + 
cl (1 - -  cl) 

+ 
8T 

--+ 
Oc 1 

a~H --+ 
ac i 

(19) 

(20) 
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With allowance for the relations 

Eqs. (19) and (20) 

where 

d c ~ _  dcl dT d2c~_  d2q ( dT'~2 dcl d~T 
dx dr  7 / ;  dx ~ dT ~ ~--~ ] + d ~  dx ~ 

take the form 

d~cl 1 dKt 
d~T 1 dD "'dT 2 + ~ dT 
dx 2 " -~- --D d~- + de1 Kt  

dT +--T-  

T 2 "2= 0, 

d~T f~ (T)-+ % (T) ( dT ~2 
dx - - - T - +  dci ~_ ~,lZlCi(1--el) \--d~x ] = o, 

dT pRDTK t 

(21) 

(22) 

2c1--1 dcl + 1 dD 1 1 dKt + 
f , (T)-:  c~(1--c,) dT-  D d ~  + - T -  + Kt dr  

+ p.ic i (1 - -  c1) 02H ] dc~ . 

RTK OciOT .j dT ' 
t 

%(T) d2Cl /- p.lcl(1--c~) d~ + 1~1c1(1--cl) 0~H 
dT 2 pRDTK t dT RT ~ OclOT 

Equating the corresponding coefficients of Eqs. (21) and (22) to each other, after certain 
transformations we obtain the following differential equation for determing the thermo- 
diffusion ratio: 

d K t  A l - - a  K24_ (BI--b)+(A1Cs --aCO BtC~--bC~ 
dT C1--C2 t C1--C2 Kt -t- C1--C2 ' (23) 

where 
1 dD 1 T dD dci dct . . . .  ; b - - - -  ; C ' 2 = T - - ,  
D dT T D dT dT dT 

RT Oc,O-----T @ 9D dr  _ d---fi-' 

_ ~ 1 c l  (1 - -  cO I dci 
C1 

pRDT ] dT ' 

Ai = [ 2c1--1 dci t- 1 dD 

L ct(1--cl) dT D dT 

Ihct (1--  c,) O~H ] /  dcl + 
R T  ~- Oc,OT J l. dT 

[ a2c, 
- -  + + [ dT2 + 

Equation (23) 
Therefore, it can be solved by numerical methods on a computer. 
solution has physical meaning in the temperature interval 

is the Riccati equation, a general solution of which cannot yet be obtained. 
For ideal gas mixtures its 

9 • 2  ~'~ T ~ ~=P- 
pR (24) 
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for each fixed value of the density of the binary mixture, since it is assumed that p = const 
over the entire volume of the mixture. For a certain boundary condition, Eq. (23) uniquely 
determines the temperature dependence and, through it, the concentration dependence of the 
thermodiffusion ratio of binary gas mixtures in the approximation of the assumptions made. 

The determination of the correct boundary condition for Eq. (23) on the basis of theore- 
tical considerations presents serious difficulty. Two different boundary conditions for 
this equation can be set up. They follow from the condition that one of the components of 
the binary mixture disappears at the limits of the interval (24), and hence the thermodiffusion 
ratio vanishes. But these boundary conditions have the drawback that they do not correspond 
to internal points of the interval (24). In connection with this, difficulties of a mathe- 
matical Character, connected with questions of the stability and convergence of the solution 
obtained, arise in the numerical solution of Eq. (23). 

For convenience in the further analysis of Eq. (23), we rewrite it in the form 

dKt _ t + c, 
d T  (25) 

where 

A - -  A , - - a .  (B , - -b )H - (A~C; - -a CO  . 
C1--Cs B =  G - - C ~  ' 

C- BiC2--bC, 
G--G 

An analysis of the structure of Eq. (25), under the assumption that K t is a smooth 
continuous function of the temperature, gives reason to assume that in the most general case 
K t has a local maximum and minimum in the interval (24). It is determined from the condition 

d K / d T  = O, 
t 

i.e., 

- - B  +_ ] / B  2 - -  4AC (26) 
K t =  2A 

Hence, within the interval there may be one value of the temperature at which the thermo- 
diffusion ratio is reduced to zero. In the transition through this temperature, the thermo- 
diffusion ratio changes sign. This temperature is called the inversion temperature [4]. 

Those binary mixtures which do not have inversion temperatures must, in accordance with 
Eq. (26), have either a local maximum or a local minimum within the interval (24), which 
corresponds to the temperature determined from the equation 

B ~ - - 4 A C  : O. 

Then the value of the extremum is determined from the formula 

(27) 

B 
K -- (28) r. 2A 

When the condition (27) is satisfied for a given binary mixture, as the boundary condition 
for Eq. (25) one can take 

B 
K t - -  2A ; T = T o ,  
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where To is a root of Eq. (27). 

Although a particular solution of Eq. (25) is obtained in the form of the temperature 
dependence of Kt, it does not express the temperature dependence of K t referred to some 
definite concentration. In it the concentration of the mixture varies simultaneously with 
variation of the temperature, in accordance with Eq. (16). But by varying the density of 
the mixture, one can, in principle, obtain a set of solutions of Eq. (25) enabling one to 
determine only the temperature dependence or only the concentration dependence of K t 
referred to some definite concentration or temperature. 

We note that the results of a numerical solution of Eq. (25) by the Runge-Kutta method 
as applied to an Na--CO= binary gas mixture at a total pressure of 1.013.10 s Pa and a density 
p ='1.1372 kg/m 3 in the temperature range of 300 ~ T ~ 471.42~ yield "reasonable" values 

for K t . 

2. Now let us consider the case of combined heat and mass transfer in a saturated 
binary vapor-gas mixture. In such a mixture the pressure of the saturated vapor is a 
unique function of the temperature. At a constant pressure, the density and concentration 
of the mixture are functions only of the temperature. With allowance for this, the system 
of equations (17)-(18) is written in the form 

d~T + 1 dp_+ 1 dD + dT ~ T dT T ~ ( d T ~  ~ 
dx ------7- p dT D d~- dc__..~l + K t  \ - - -~  ] = O, (29) 

dT T 

where 

d2T f~(T) @ %(T) ( dT ~2 
dx--~ + dc__L_l + ;~lzicl (1 - -  Cl) \--~--x / == 0, ( 3 0 )  

dT pRDTKt  

d~Cl ~cl (1 --  cl) d~ q% (T) - -/ 
dT ~ 9RDTKt dT 

[2(T) = I 2c,--1 dc~ + 1 dp 
ci(1 - -  Cl) dT p dT 

"4- ~ dK____t_t + Fic~ (1 -- ci) 
K t dT RTKt  

[-~lCt (1 - -  e l )  O~'H 

RT 2 OciOT 

1 dD 1 
+ dU +- -F  + 

O~H ] d c i .  
OclOT dT 

Equating the coefficients of (29) and (30), we obtain a differential equation for deter- 
mining the thermodiffusion ratio for a saturated vapor--gas mixture, 

where 
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dKt. AI - -  a' (B~ - -  b') 4- (AIC~ - -  a'Ci) B'IC'~ - -  b'Ci (3l)  
dr : c ; - c ;  C;--C; ' 

a' = . . . .  1 dp + 1 dD 1 ; C'2= T--dci ," 
p dT D dT T dT 

b, : ( T  d9 + T cID ) dc~ . 
p dT D dT dT ' 

A ~ - [  2c1--1 de 1 1 dp 1 dD 1 ] 
el( l --el)  d---T + -  - - + - -  p dT D dT T + 

[ d2Cl Ihcl(1--cO 02H ] /  dcl . 
+ L dT~- + R T~ OclOT dT ' 

B; ~1c1(1--cl) [ 0'H 1 d~ ] /  dc, . 
RT ' Oc,O---~ + O'---D- d r  dr -  ' 

C1 = X[liCipRDT(l --  cl) / dT dcl 



Equation (31) as applied to a saturated vapor--air mixture was made concrete in [5], 
where the results of a numerical solution in the temperature range of 273~ T~373~ are 
presented. 

Further Kesearch on the determination of the thermodiffusion ratios of various binary 
gas and vapor--gas mixtures is required for the fullest determination of the possibilities 
and the reliability of the above analytic method of determining the thermodiffusion ratios 
of binary gas mixtures and saturated vapor-gas mixtures on the basis of the differential 
equations derived. 

We note that the idea of the above method can be used, in principle, to determine the 
thermodiffusion ratios in liquids and solids. 

NOTATION 

yoo, y1o, y11, kinetic coefficients; xl, x2, molar fractions of the components of the 
mixture; V, gradient symbol; J1, vector of flux density of a substance; ~I, ~2, molecular 
masses of the components of the mixture; R, universal gas constant; T, local temperature 
of the mixture; HI, H2, specific enthalpies of the components of the mixture; p, density 
of themixture; pl,density of the light component of the mixtures ci, mass concentration of the light 
component of the mixture;D, diffusion coefficient: %, coefficient of thermal conductivity of 
the mixture; Kt, thermodiffusion ratio of the mixture; p, pressure of the mixture; n, power 
of the temperature dependence of the diffusion coefficient of the binary mixture under con- 
sideration; po, pressure of the mixture under standard conditions; Do, diffusion coefficient 
under standard conditions; at, thermodiffusion constant of the mixture; q, vector of heat- 
flux density; H, specific thermodynamic function of the mixture. 
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